New Perspectives on the BRST-algebraic Structure of String Theory

نویسندگان

  • Bong H. Lian
  • Gregg J. Zuckerman
چکیده

Motivated by the descent equation in string theory, we give a new interpretation for the action of the symmetry charges on the BRST cohomology in terms of what we call the Gerstenhaber bracket. This bracket is compatible with the graded commutative product in cohomology, and hence gives rise to a new class of examples of what mathematicians call a Gerstenhaber algebra. The latter structure was first discussed in the context of Hochschild cohomology theory [11]. Off-shell in the (chiral) BRST complex, all the identities of a Gerstenhaber algebra hold up to homotopy. Applying our theory to the c=1 model, we give a precise conceptual description of the BRST-Gerstenhaber algebra of this model. We are led to a direct connection between the bracket structure here and the anti-bracket formalism in BV theory [29]. We then discuss the bracket in string backgrounds with both the left and the right movers. We suggest that the homotopy Lie algebra arising from our Gerstenhaber bracket is closely related to the HLA recently constructed by Witten-Zwiebach. Finally, we show that our constructions generalize to any topological conformal field theory. Supported by NSF Grant DMS-9008459 and DOE Grant DE-FG0292ER25121.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The universal envelope of the topological closed string BRST - complex

We construct a universal envelope for any Poissonand Gerstenhaber algebra. While the deformation theory of Poisson algebras seems to be partially trivial, results from string and M -theory suggest a rich deformation theory of Gerstenhaber algebras. We apply our construction in this case to well known questions on the topological closed string BRST-complex. Finally, we find a simliar algebraic s...

متن کامل

Algebraic and Geometric Structures in String Backgrounds

We give a brief introduction to the study of the algebraic structures – and their geometrical interpretations – which arise in the BRST construction of a conformal string background. Starting from the chiral algebra A of a string background, we consider a number of elementary but universal operations on the chiral algebra. From these operations we deduce a certain fundamental odd Poisson struct...

متن کامل

Physical Degrees of Freedom in 2-D String Field Theories

States in the absolute (semi-relative) cohomology but not in the relative cohomology are examined through the component decomposition of the string field theory action for the 2-D string. It is found that they are auxiliary fields without kinetic terms, but are important for instance in the master equation for the Ward-Takahashi identities. The ghost structure is analyzed in the Siegel gauge, b...

متن کامل

W-strings from N = 2 Hamiltonian Reduction and Classification of N = 2 Super W-algebras

We present an algebraic approach to string theory, using a Hamiltonian reduction of N = 2 WZW models. An embedding of sl(1|2) in a Lie superalgebra determines a niltopent subalgebra. Chirally gauging this subalgebra in the corresponding WZW action leads to an extension of the N = 2 superconformal algebra. We classify all the embeddings of sl(1|2) into Lie superalgebras: this provides an exhaust...

متن کامل

Renormalization Group Flow in BRST Invariant Open String σ-Model

The renormalization group flow in the theory space of a BRST invariant string σ-model is investigated. For the open bosonic string the non-perturbative off-shell effective action and its gauge symmetry properties are determined from β-functions defined by the local Weyl anomaly. The interactions are shown to explicitly break the free theory BRST invariance generating new non-linear gauge symmet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1992